

Guidance, Navigation, and Control System Simulations via

Graphics Processor Unit

by Mark Ilg

ARL-TR-5645 September 2011

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005

ARL-TR-5645 September 2011

Guidance, Navigation, and Control System Simulations via

Graphics Processor Unit

Mark Ilg

Weapons and Materials Research Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2011
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

January to June 2011
4. TITLE AND SUBTITLE

Guidance, Navigation, and Control System Simulations via Graphics Processor
Unit

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Mark Ilg
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-WML-F
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION

 REPORT NUMBER

ARL-TR-5645

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT

 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Monte Carlo simulation is crucial in the design, development, and execution of a guided projectile program. Graphics
processing units (GPUs) are powerful parallel computing devices that are increasingly being used for general purpose (GP)
computing. This technical report details the use of GPUs for Monte Carlo simulations with the goal of aiding the Guidance,
Navigation, and Control (GN&C) engineer during the design phase of a guided weapon. This report provides a brief overview
of GP GPU computing, a basic six-degree-of-freedom projectile dynamic model, and the implementation of a GPU. Run-time
performance comparisons are performed between serial Monte Carlo simulations performed on a central processing unit
(CPU) and parallel simulations performed on a GPU. The results show that for large numbers of trajectories, significant run-
time reductions are possible for Monte Carlo simulations performed on the GPU in comparison to simulations performed
serially on the CPU.
15. SUBJECT TERMS

GN&C, GPU, Monte-Carlo

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

OF ABSTRACT

UU

18. NUMBER

OF PAGES

18

19a. NAME OF RESPONSIBLE PERSON

Mark Ilg
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

(410) 306-0780
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Contents

1. Introduction 1

2. Mathematical Model 2

2.1 Equations of Motion . 3

2.2 State Vector Propagation . 3

3. GPU Processing 5

4. Results 7

5. Conclusion 9

References 10

List of Symbols, Abbreviations, and Acronyms 11

Distribution 12

iii

List of Figures

1 Block diagram of the model . 2

2 CUDA GPU programming model . 5

3 Program flow . 6

4 Simulation configuration . 7

5 Cluster results . 8

6 GPU execution time . 9

7 GPU impact distribution . 9

List of Tables

1 Example distributions . 6

iv

1. Introduction

Our traditional modeling and simulation (M&S) tools can no longer sustain the pace of

technological advances and required a new and truly multidiscipline approach, integrating

expertise across a variety of domains. Model simplification and back-of-the-envelope

calculations are no longer sufficient for complex systems and designs with constrained time

frames and costly experiments. To address these issues, a Model Based Design (MBD)

approach is used in order to maintain a work environment that adapts to the ever-changing

design.

MBD is a method of designing complex control systems using mathematical and visual

tools to address the common problems associated with complex control system designs.

MBD is a methodology used in many fields that rely heavily on unique and often

demanding control systems that require real-time implementation including the aerospace,

automotive, and industrial fields. MBD allows the control engineer to maintain a work

environment that adapts to the ever-changing physical aspects of a control system. MBD is

significantly different from traditional design processes and begins with a plant model

based on the projectile aerodynamics and physical properties consisting of recursive steps

and model refinement loops. After model validated through experimentation,

computational fluid dynamics, and engineering intuition, a controller is designed to meet

the system requirements. The controller is ported from the simulation environment to a

processor and the system undergoes processor-in-the-loop (PIL) testing followed by

hardware-in-the-loop (HIL) testing using rapid prototyped hardware. The testing and

verification process is improved because the entire design life cycle is fluid and does not

require significant changes mid-cycle. The dynamic effects on the system are rapidly

identified through the HIL testing much more efficiently than with tradition design

methodology and problems can be identified early before costly flight testing. This

methodology was used in the design of a Guidance, Navigation, and Control (GN&C)

system for the Very Affordable Precision Projectile (VAPP) demonstration program.

A demand for increased graphics processing performance is ever increasing in the

computing world. To satisfy this demand, the graphics processing unit (GPU) market was

developed, originally to meet for the heavy computational requirements of texture mapping

and rendering. More recently, the GPU has been tasked for more computational complex

operations including geometric calculations. Due to the computing requirements, more and

more operations that were traditionally performed in the fixed point arena using dedicated

circuits have migrated over to floating point cores on the GPU. NVIDIA, one of the largest

producers of GPUs, released a parallel computing architecture specifically designed to

leverage the parallel floating point architecture on the GPU, aptly named CUDA. CUDA,

released in 2006, allowed programmers familiar with standard programming languages to

1

exploit the capabilities of the GPU directly. CUDA consists of a set of application

programming interfaces (API) that allow programmers to execute portions of their code in

parallel threads on the GPU’s hundreds of cores. The API provides hardware abstraction,

which allows software to run on any NVIDIA GPU without specific hardware programming

calls.

NVIDIA’s release of the CUDA architecture has led to a veritable explosion of GPU-based

research by scientists, engineers, and mathematicians over the past five years. Investigation

of difficult parallel computational problems, until then restricted to those with access to

large-scale computing clusters, were suddenly solvable in reasonable amounts of time using

personal computers. Code modifications were minimal due to the straightforward API

provided by the architecture.

The following report describes one aspect of the MBD GN&C system design, the Monte

Carlo statistical analysis. The report describes the use of a GPU for Monte Carlo analysis to

provide an understanding of the ballistic dispersion for a projectile due to various parameter

variations. Monte Carlo analysis provides the ability to analyze the projectiles behavior and

characterize which parameters are most sensitive during the design process.

2. Mathematical Model

The model used in the simulation and Monte Carlo analysis of the projectile dynamics is

depicted in the block diagram outlined in figure 1.

Figure 1. Block diagram of the model.

Note:

ua Aerodynamic Forces and Moments
ue Environmental Forces and Moments
x State Vector
x̃ Environmentally Perturbed State Vector

2

2.1 Equations of Motion

The state equations for the equations of motion block are shown in equations 1–4. Equa-

tions 1 and 2 are the Translational and Rotational Dynamic equations for a rigid body,

respectively.

V̇ =
Fb

m
− ω × V (1)

ω̇ = I−1 (Mb − ω × Iω) (2)

where

V = body fixed velocity vector
Fb = applied forces
ω = body fixed angular rates
m = mass of the projectile
I = inertia tensor
Mb = applied moments

The applied forces consist of the body and canard aerodynamic forces and force due to

gravity. The applied moments consist of the body and canard moments and the moment

due to the center of gravity offset. In the simulation, the aerodynamic forces and moments

consist of lookup tables derived through empirical methods, computational fluid dynamics

(CFD), wind tunnel experiments, and flight experiments. The remaining state variables

consist of the kinematic equations:

Ẋe = R−1V (3)

q̇ = ω ⊗ q (4)

where Xe is the position of the projectile in the reference coordinate system, R is the direc-

tion cosine matrix, and q is the quaternion, and ⊗ represents the skew symmetric matrix

product. Although quaternion representation is used in this simulation, Euler angles, or di-

rection cosine matrix state propagation could be used. Derivation of the equations of motion

has been extensively studied in references 1–6. The aerodynamic model also includes the fol-

lowing sub-models, which will not be detailed: wind models, a gravity model, a temperature

model, and a pressure model.

2.2 State Vector Propagation

In order to resolve the motion for a particular instance in time, a ordinary differential

equation (ODE) integration method must be used. The state equations of a projectile can

be written as a series of nonlinear differential equations as a single point boundry condition

initial value problem:
dxi(t)

dt
= fi (t, xo, ..., xN−1) (5)

3

where, xi are the state variables and fi are known functions of x and t. To propagate these

equations, we require a numerical integration technique. Simple methods for initial value

problems include Euler Integration, Trapezoidal Integration, and Runge-Kutta. In this

work, an adaptive 4th-order Runge-Kutta method is chosen due to ease of coding and

computational speed (7) . The Runge-Kutta method uses a linear combination of several

Euler style integration steps to solve for the state. The formula for the Runge-Kutta

method is

k1 = hf(tn, xn) (6a)

k2 = hf(tn +
δt

2
, xn +

k1

2
) (6b)

k3 = hf(tn +
δt

2
, xn +

k2

2
) (6c)

k4 = hf(tn + δt, xn + k3) (6d)

xn+1 = xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
(6e)

To choose the time step for the solver, δt, we evaluate the Runge-Kutta solution to the

dynamics equations a series of times as outlined in the following steps.

Step 1: Evaluate the solution at the current time step.

xn+ = frk

(

t +
δt

2
, xn

)

(7)

Step 2: Evaluate the solution at the half the current time step, followed by the another

iteration of half the time step.

x−

n+
1

2

= frk

(

t +
δt

2
, xn

)

(8a)

x−

n = frk

(

t +
δt

2
, x−

n+1/2

)

(8b)

Step 3: Compare the residuals of the two simulations and compute the maximum error.

emax = max
(

x+

n − x−

n

)

(9)

Step 4: Adjust the next time step.

δ+
t = δ−t

(

emax

cmax

)α

(10)

Constants cmax and α are chosen by the designer based on the dynamics and δt is chosen

with the following constraints, δtmax and δtmin.

δt =







δtmax δ+
t > δtmax

δtmin δ+
t < δtmin

δ+
t otherwise

(11)

4

3. GPU Processing

This “single-program-multiple-data” structure of the dynamics model is ideal for implemen-

tation on a GPU since each simulation is independent of the results of any other simulation.

The CPU interacts with the GPU through a memory transfer mechanism within CUDA.

Figure 2 shows that overview block diagram of a GPU that uses the CUDA programming

API and how it interfaces the CPU. The parallel code, or kernel, is launched and executed

on a device by multiple threads. These threads are grouped into blocks, and blocks into

grids. Each of the threads consist of a unique simulation model, which is free to execute its

own code path (8). Although possible, the thread blocks do not communicate via the shared

memory or synchronize their execution.

Figure 2. CUDA GPU programming model.

The GPU-based Monte Carlo simulation is described in figure 3. First, the projectile data

set is loaded from a file or through another software interface. Next, a set of N initial

conditions are generated for the projectile under test. These initial conditions consist of

a random number distribution consisting of state vector, mass properties, environmental

terms, and aerodynamic coefficient variations. An example of some of the distributions are

given in table 1.

5

Figure 3. Program flow.

Table 1. Example distributions.

Parameters Distribution Type

Aerodynamic Terms Multiplicative Normal Distribution xN = x ∗ N (µ, σ)
Mass Properties Additive Normal Distribution xN = x + N (µ, σ)

Wind Uniform Distribution xN = U (min, max)
Body Initial Conditions Additive Normal Distribution xN = x + N (µ, σ)

These initial conditions are generated using unique probability distribution functions using

real-world statistical measurements. The CPU initializes the set of initial conditions, places

them in GPU memory, and spawns GPU threads to perform the dynamic simulations as

described in section 2. Each GPU thread, executed on a single core of the GPU, simulates

6

the trajectory of one projectile. On completion of the trajectory, flagged by impact or angle

of attack error, the central processing unit (CPU) collects and organizes all trajectory data

from GPU memory.

4. Results

To show the potential of the GPU as a Monte Carlo tool for guided munitions, comparisons

were made between a GPU and a computing cluster (9). The six-degrees-of-freedom

(6DOF) model of a guided mortar was used in the analysis, developed in the U.S. Army

Research Laboratory (ARL) Precision Simulation Environment (PRESIMEN). The

parameters for the model, including aerodynamics, wind terms, mass properties,

environmental models, etc., were loaded into the GPU data set using the Mathworks API

to ensure a fair comparison of the models.

Figure 4 shows the experimental data flow of the computing cluster versus the GPU

simulations. The simulation model allows the generic 6DOF model hosted in both the

GPU and cluster environments to share similar parameters and initial conditions. To

compute the distributions, we used the Mathworks built-in random number generator in

the cluster configurations, and for the GPU simulations, the standard math library random

number generator was chosen. All double precision values were converted to single point

precision prior to passing data from the computed distributions to the GPU. Table 1

provides details about the types of distributions used in the analysis. The distributions

were chosen as Normal and Uniform due to the simplicity of implementations and for

demonstration purposes.

Figure 4. Simulation configuration.

The GPU used in the analysis is a laptop GPU, NVIDIA Quadro FX 2700M, and all

software was coded in C++ and CUDA. The GPU is a mid-range mobile workstation

graphics card with 48 cores and 512 MB or DDR3 local memory. The GPU grid sized used

7

in the runs is 64 and was determined via experimentation. The workstation is a Dell

Precision M6400 laptop with a Intel Core2 Duo Processor at 2.66 GHz, 8 GB DDR3 RAM,

and running Windows Vista x64. The computing cluster used in this experiment consists of

five Dell Precision T7400 workstations running Vista x64 with four Intel Xeon Processors

at 3 GHz with 4 GB RAM each. The computing cluster is connected via 100-MB ethernet

and is scheduled using the Condor scheduler using normal priority on all jobs.

Figure 5 shows the histogram of 20k runs on the computing cluster of the 6DOF model.

The average execution time of simulation is 13.2 s for a total execution time of 108.53 min.

Figure 5. Cluster results.

Figure 6 shows a plot of the number of runs versus the average execution time of the

6DOF, where the number of runs was varied between N=100 and N=100k runs. The

average execution time of the 6DOF for approximately 20k runs is approximately 0.13 s, a

100 times improvement over the cluster-based method. The total execution time, including

CPU arbitration of the initial distributions, is approximately 12 min. This is a large

improvement over the CPU-based method, which inherently has the problem of the

ethernet latency. The impact histogram of 100k runs is shown in figure 7. The impact

points show a clear Gaussian distribution indicative of a projectile’s impact. These data

have similar statistical properties to the computing cluster and are useful in system

effectiveness studies.

8

Figure 6. GPU execution time.

Figure 7. GPU impact distribution.

5. Conclusion

This report proposed a means of using a GPU for simulations of guided projectiles. The

proposed method shows that the GPU-based approach has large advantages in computing

massive Monte Carlo analysis over a computing cluster using a CPU-only approach. With

the short-duration run times of this technology, this method shows enormous prospects in

real-time computations of ballistic and guided projectiles for fire-control systems, impact

point predictors, particle filters, etc.

9

References

[1] Ilg, M. Guidance, Navigation, and Control for Munitions, Ph.D. dissertation, Drexel

University, 2008.

[2] Wilson, M. Projectile Navigation and the Application to Magnetometers, Ph.D. disser-

tation, University of Deleware, 2007.

[3] Murphy, C. Free Flight Motion of Symmetric Missiles; Brl-r1216; U.S. Ballistics Research

Laboratory, July 1963.

[4] Bradley, J. Equations of Motion - A Prelude to r1216; U.S. Ballistics Research Labora-

tory, December 1992.

[5] Hainz III, L.; Costello, M. Modified Projectile Linear Theory for Rapid Trajectory Pre-

diction. Journal of Guidance, Control, and Dynamics 2005, 28 (5), 1006–1014.

[6] Fraysee, J.; Ohlmeyer, E.; Pepitone, T. Guidance, Navigation and Control Without

Gyros: A Gun-launched Munition Concept. Proceedings of AIAA Guidance, Navigation,

and Control Conference and Exhibit, August 5–8, 2002.

[7] Press, W.; Teukolsky, S.; Vetterling, W.; Flannery, B. Numerical Recipes in C++; Cam-

bridge University Press, 2002.

[8] NVIDIA, Cuda website. developer.nvidia.com/cuda-training, 2011.

[9] Ilg, M. Multi-core Computing Cluster for Safety Fan Analysis of Guided Projectiles; ARL-

TR-5646; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, in press.

10

List of Symbols, Abbreviations, and Acronyms

6DOF six-degrees-of-freedom

API application programming interfaces

ARL U.S. Army Research Laboratory

CFD computational fluid dynamics

CPU central processing unit

GN&C Guidance, Navigation, and Control

GPU graphics processing unit

HIL hardware-in-the-loop

M&S modeling and simulation

MBD Model Based Design

ODE ordinary differential equation

PIL processor-in-the-loop

PRESIMEN Precision Simulation Environment

VAPP Very Affordable Precision Projectile

11

12

NO. OF
COPIES ORGANIZATION

 1 ADMNSTR
 ELEC DEFNS TECHL INFO CTR
 ATTN DTIC OCP
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218

 1 CD OFC OF THE SECY OF DEFNS
 ATTN ODDRE (R&AT)
 THE PENTAGON
 WASHINGTON DC 20301-3080

 1 US ARMY RSRCH DEV AND ENGRG CMND
 ARMAMENT RSRCH DEV & ENGRG CTR
 ARMAMENT ENGRG & TECHNLGY CTR
 ATTN AMSRD AAR AEF T J MATTS
 BLDG 305
 ABERDEEN PROVING GROUND MD 21005-5001

 1 US ARMY INFO SYS ENGRG CMND
 ATTN AMSEL IE TD A RIVERA
 FT HUACHUCA AZ 85613-5300

 1 COMMANDER
 US ARMY RDECOM
 ATTN AMSRD AMR W C MCCORKLE
 5400 FOWLER RD
 REDSTONE ARSENAL AL 35898-5000

 1 US GOVERNMENT PRINT OFF
 DEPOSITORY RECEIVING SECTION
 ATTN MAIL STOP IDAD J TATE
 732 NORTH CAPITOL ST NW
 WASHINGTON DC 20402

 1 US ARMY RSRCH LAB
 ATTN RDRL WML F M ILG
 BLDG 4600
 ABERDEEN PROVING GROUND MD 21005

 3 US ARMY RSRCH LAB
 ATTN IMNE ALC HRR MAIL & RECORDS MGMT
 ATTN RDRL CIO LL TECHL LIB
 ATTN RDRL CIO MT TECHL PUB
 ADELPHI MD 20783-1197

